
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Machine learning of public sentiments towards wind energy in Norway

Machine learning of public sentiments towards wind energy in Norway
AbstractAcross Europe, negative public opinion has and may continue to limit the deployment of renewable energy infrastructure required for the transition to net‐zero energy systems. Understanding public sentiment and its spatio‐temporal variations is as such important for decision‐making and for developing socially accepted energy systems. In this study, we apply a sentiment classification model based on a machine learning framework for natural language processing, NorBERT, on data collected from Twitter between 2006 and 2022 to analyse the case of wind power opposition in Norway. From the 68,828 tweets with geospatial information, we show how discussions about wind power intensified in 2018/2019 together with a trend of more negative tweets up until 2020, both on a regional level and for Norway as a whole. Furthermore, we find weak geographical clustering in our data, indicating that discussions are country wide and not dominated by specific regional events or developments. Twitter data allow for detailed insight into the temporal nature of public sentiments and extending this research to additional case studies of technologies, countries and sources of data (e.g. newspapers, other social media) may prove important to complement traditional survey research and the understanding of public sentiment.
- University of Oslo Norway
- University Graduate Center Norway
- University Graduate Center Norway
FOS: Computer and information sciences, machine learning, sentiment analysis, public sentiment, Twitter, TJ807-830, Applications (stat.AP), wind power, Statistics - Applications, Renewable energy sources
FOS: Computer and information sciences, machine learning, sentiment analysis, public sentiment, Twitter, TJ807-830, Applications (stat.AP), wind power, Statistics - Applications, Renewable energy sources
1 Research products, page 1 of 1
- IsRelatedTo
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).3 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
