Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Magnetic ...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Magnetic Resonance
Article . 2000 . Peer-reviewed
License: Elsevier TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

ENDOR Spectroscopic and Molecular Orbital Study of the Dynamical Properties of the Side Chain in Radical Anions of Ubiquinones Q-1, Q-2, Q-6, and Q-10

Authors: Heikki Joela; Pekka Lehtovuori;

ENDOR Spectroscopic and Molecular Orbital Study of the Dynamical Properties of the Side Chain in Radical Anions of Ubiquinones Q-1, Q-2, Q-6, and Q-10

Abstract

The dynamics of the side chain of the radical anions of ubiquinones Q-1 (2,3-dimethoxy-5-methyl-6-[3-methyl-2-butenyl]-1,4-benzoquinone), Q-2, Q-6, and Q-10 have been investigated using electron nuclear double-resonance (ENDOR) spectroscopy. When radicals are produced in the liquid phase, secondary radicals are also formed. The EPR spectra of these additional radicals overlap with the radical of interest. ENDOR spectroscopy was found to be capable for studying the dynamical properties of such conditions. The temperature dependence of the isotropic hyperfine coupling constants of the beta- and gamma-protons of the side chain was measured. The activation energy of the rotation and other dynamical properties of the side chain were calculated assuming that rotation can be modeled by the classical two-jump model. The rotation energy barrier for Q-1 was also determined by the hybrid Hartree-Fock/density functional method UB3LYP with the 6-31G(d) basis set. Calculated results were in good agreement with the experimental results. Despite the numerous parameters affecting the ENDOR linewidth ENDOR spectroscopy was shown to be a potential method for studying the dynamical properties of the mixtures of the radicals. Prominent forbidden transitions appear in the ENDOR spectra when alkali ions are present in the sample. From these transitions measured ENDOR-induced EPR spectra showed an additional doublet and phase transition in electron Zeeman frequency.

Keywords

Ethanol, Ubiquinone, Electron Spin Resonance Spectroscopy, Solvents, Protons

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Average
Average
Top 10%
Related to Research communities
Energy Research