
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Load Forecasting in District Heating Networks: Model Comparison on a Real-World Case Study
handle: 11562/1002924
District Heating networks (DHNs) are promising technologies for heat distribution in residential and commercial buildings since they enable high efficiency and low emissions. Within the recently proposed paradigm of smart grids, DHNs have acquired intelligent tools able to enhance their efficiency. Among these tools, there are demand forecasting technologies that enable improved planning of heat production and power station maintenance. In this work we propose a comparative study for heat load forecasting methods on a real case study based on a dataset provided by an Italian utility company. We trained and tested three kinds of models, namely non-autoregressive, autoregressive and hybrid models, on the available dataset of heat load and meteorological variables. The optimal model, in terms of root mean squared error of prediction, was selected. It considers the day of the week, the hour of the day, some meteorological variables, past heat loads and social components, such as holidays. Results show that the selected model is able to achieve accurate 48-hours predictions of the heat load in several conditions (e.g., different days of the week, different times, holidays and workdays). Moreover, an analysis of the parameters of the selected models enabled to identify a few informative variables.
- University of Verona Italy
- University of Verona Italy
Load Forecasting, District Heating Networks, ARIMA, predictive modeling, time series forecasting
Load Forecasting, District Heating Networks, ARIMA, predictive modeling, time series forecasting
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
