Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Load Forecasting in District Heating Networks: Model Comparison on a Real-World Case Study

Authors: BIANCHI, FEDERICO; A. Castellini; P. Tarocco; A. Farinelli;

Load Forecasting in District Heating Networks: Model Comparison on a Real-World Case Study

Abstract

District Heating networks (DHNs) are promising technologies for heat distribution in residential and commercial buildings since they enable high efficiency and low emissions. Within the recently proposed paradigm of smart grids, DHNs have acquired intelligent tools able to enhance their efficiency. Among these tools, there are demand forecasting technologies that enable improved planning of heat production and power station maintenance. In this work we propose a comparative study for heat load forecasting methods on a real case study based on a dataset provided by an Italian utility company. We trained and tested three kinds of models, namely non-autoregressive, autoregressive and hybrid models, on the available dataset of heat load and meteorological variables. The optimal model, in terms of root mean squared error of prediction, was selected. It considers the day of the week, the hour of the day, some meteorological variables, past heat loads and social components, such as holidays. Results show that the selected model is able to achieve accurate 48-hours predictions of the heat load in several conditions (e.g., different days of the week, different times, holidays and workdays). Moreover, an analysis of the parameters of the selected models enabled to identify a few informative variables.

Country
Italy
Related Organizations
Keywords

Load Forecasting, District Heating Networks, ARIMA, predictive modeling, time series forecasting

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%