Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IRIS Cnr
Conference object . 2020
Data sources: IRIS Cnr
CNR ExploRA
Conference object . 2020
Data sources: CNR ExploRA
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Energy Saving in TSCH Networks by Means of Proactive Reduction of Idle Listening

Authors: S Scanzio; G Cena; A Valenzano; C Zunino;

Energy Saving in TSCH Networks by Means of Proactive Reduction of Idle Listening

Abstract

Conserving energy is probably the most important requirement in wireless sensor networks. In TSCH, this goal is obtained by subdividing time into slots, and by switching the communication interface of Internet of Things devices (frequently referred to as motes) off when, at any given time, neither transmissions nor receptions are scheduled for them. Nevertheless, in this kind of networks a considerable amount of energy may still be wasted due to idle listening. This occurs every time a cell is scheduled for frame reception but no transmissions are performed in the related slot and channel. In this paper, Proactive Reduction of Idle Listening (PRIL) techniques are introduced, which aim at lowering the energy wasted because of the above phenomenon. In particular, here we focus on a simplified mechanism that only considers the first hop (PRIL-F). A relevant feature of this kind of techniques is that they cannot worsen performance in any way. On the contrary, in those cases where they can be applied, they may only bring benefits. Results obtained through a simulation campaign show a tangible reduction in energy consumption, especially for periodic traffic generation, in application contexts based on either a star topology (wireless sensor and actuator networks) or a two-level topology (wireless sensor networks).

Country
Italy
Keywords

Time Slotted Channel Hopping (TSCH), Energy Consumption, Wireless Sensor Networks, Idle listening, Power sensing

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%