Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2022 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Integration of Renewable Energies at Maritime Container Terminals

Authors: Felix Schütze; Anne Kathrina Schwientek; Ole Grasse; Carlos Jahn;

Integration of Renewable Energies at Maritime Container Terminals

Abstract

Maritime container terminals play an important role in global supply chains. In addition to the rapid handling of containers, the reduction of CO2 emissions is also increasingly crucial for terminal operators. This can be achieved by integrating renewable sources such as photovoltaic or wind energy. While energy supply and demand must be in balance, the amount of energy produced through renewable sources cannot be controlled as it depends exclusively on variable weather conditions. One option for efficient use of renewable energy sources is to modify energy consumption by intelligently controlling processes. This study aims to answer the question to what extent energy intensive consumption processes at container terminals can be adapted to a volatile energy supply. A discrete event simulation study is conducted to analyze handling processes by quay cranes as main energy consumers depending on the availability of photovoltaic energy. Therefore, the operating times of quay cranes are partially limited to daylight hours. Only a low number of quay cranes is deliberately deployed when a time window occurs between the predicted end of loading of the vessel and a departure time of the vessel determined by the tidal range. The simulation results show that by flexibly using certain quay cranes only during daylight hours the percentage of energy produced by renewable resources can be increased by up to 50%. As a result, handling-related CO2 emissions can be reduced. The study offers an approach to a sustainable energy supply on terminals by reconciling energy use and environmentally friendly generation.

Related Organizations
Keywords

Energy consumption, Renewable energies, Discrete event simulation, Container terminal, Quay cranes

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average