Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2022 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The Importance of Protected Areas in Mitigating Climate Change and Conserving Ecosystems in Latin America and the Caribbean

Authors: Ibarra Eliessetch Jose Tomas; Bonacic Salas Cristian; Constanza, Arévalo; Laker, Jerry;

The Importance of Protected Areas in Mitigating Climate Change and Conserving Ecosystems in Latin America and the Caribbean

Abstract

Biodiversity conservation in a world under climate change is a significant challenge for Latin America and the Caribbean (LAC), which holds 60% of global terrestrial life. Six of the ten most biodiverse countries (Brazil, Colombia, Ecuador, Mexico, Peru, and Venezuela) are in LAC, and biodiversity hotspots are well-represented along the region’s coasts and mainland. The region has the most significant areas of tropical forest and large portions of subtropical forests, temperate steppe, and subantarctic Patagonia. Protected areas offer opportunities to conserve unique biodiversity, provide ecosystem services, and mitigate climate change effects. LAC’s contribution to carbon capture, by protecting extensive forests and other natural ecosystems, is potentially opening tremendous economic opportunities under the green economy paradigm. This chapter describes the current status of protected areas in LAC and explains how this conservation mechanism should play a mitigation role. LAC’s protected areas cover almost all types of terrestrial and marine ecosystems, and their number is increasing in the region. Although protected areas mitigate the effects of climate change on biodiversity, climate change and traditional environmental problems like deforestation, mining, and agriculture affect the viability of protected areas. Thus, their expansion and connectivity throughout the region are crucial to combat climate change and biodiversity loss. Nature is also essential to the region’s biocultural diversity, including a miriad of complex cosmovisions and traditions. In LAC’s unique ecosystems, rich biodiversity is spatially correlated with rich cultural diversity, granting opportunity for Indigenous Peoples and Local Communities to lead experiences in managing protected areas in biologically and culturally diverse ecosystems of LAC.

Country
Chile
Keywords

570, Latin America, 15 Vida de ecosistemas terrestres, 13 Acción por el clima, 13 Climate action, Biología, 15 Life on land, Climate change, Sustainable development goals, 577, Biodiversity, Conservation, Protected areas

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research