
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An Enhanced Gradient Based Optimized Controller for Load Frequency Control of a Two Area Automatic Generation Control System
An Enhanced Gradient Based Optimized Controller for Load Frequency Control of a Two Area Automatic Generation Control System
This work proposes the adoption of Enhanced Gradient-Based Optimizer (EGBO) as a new approach to the Load Frequency Control (LFC) problem in a two-area interconnected power system. The importance of determining the optimal parameters for the controllers for the LFC problem cannot be overstated, and the fact that estimating these parameters require complex and nonlinear computations makes the optimization procedure even more unique and challenging. Consequently, application of an efficient optimization algorithm to successfully attain optimal controller parameters is critical. To accomplish this task, the proposed EGBO algorithm is compared to the fundamental Gradient-Based Optimizer (GBO), Chimp Optimization Algorithm (ChOA), Sine Cosine Algorithm (SCA), Grey Wolf Optimization (GWO), and Particle Swarm Optimization (PSO) for optimizing an Integral-Time-multiplied-Absolute-Error (ITAE) based objective function. The relevant findings show that the EGBO algorithm is competitively superior in terms of resilience, precision, and latency when compared to other optimization methods. Lastly, the statistical comparison further strengthens the outcome of the study.
To be published in Engineering Applications of Modern Metaheuristics under Studies in Computational Intelligence series
- Islamic University of Technology Bangladesh
- Islamic University of Technology Bangladesh
- Islamic University of Technology Bangladesh
- Islamic University of Technology Bangladesh
FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control
FOS: Electrical engineering, electronic engineering, information engineering, Systems and Control (eess.SY), Electrical Engineering and Systems Science - Systems and Control
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).2 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
