Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2024 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data-Driven Digital Twin for Foundry Production Process: Facilitating Best Practice Operations Investigation and Impact Analysis

Facilitating Best Practice Operations Investigation and Impact Analysis
Authors: Daniel Anthony Howard; Magnus Værbak; Zhipeng Ma; Bo Nørregaard Jørgensen; Zheng Ma;

Data-Driven Digital Twin for Foundry Production Process: Facilitating Best Practice Operations Investigation and Impact Analysis

Abstract

In the context of increasing environmental concerns, the iron and steel industry faces large pressure to reduce its energy consumption and carbon footprint while maintaining economic viability. This paper explores the implementation of best practice operations within foundry processes, specifically induction furnace melting, to enhance energy and cost efficiency and reduce CO2 emissions. A digital twin model is developed integrating discrete event simulation, system dynamics modeling, and symbolic regression to simulate the foundry production process and evaluate the impact of various operational practices. A large Danish foundry is used as a case study, providing data for induction furnace production incorporating various electricity market data sources. Symbolic regression models are deployed to accurately predict melt temperatures and energy requirements. Results indicate that adopting best practices can lead to significant savings - up to 21% in electricity costs and 14.2% in CO2 emissions - while improving productivity. The study also highlights a point of diminishing returns at 65% adherence to best practices due to existing production schedules. Furthermore, the study demonstrates the digital twin’s potential as a decision-support tool in optimizing industrial process operations.

Country
Denmark
Related Organizations
Keywords

best practice operations, melting process, cost efficiency, foundry production, induction furnace, CO reduction, Digital twin, energy efficiency

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research