
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Comparison of Multi-objective Evolutionary Optimization in Smart Building Scenarios
The optimization of operating times and operation modes of devices and systems that consume or generate electricity in buildings by building energy management systems promises to alleviate problems arising in today’s electricity grids. Conflicting objectives may have to be pursued in this context, giving rise to a multi-objective optimization problem. This paper presents the optimization of appliances as well as heating and air-conditioning devices in two distinct settings of smart buildings, a residential and a commercial building, with respect to the minimization of energy costs, CO2 emissions, discomfort, and technical wearout. We propose new encodings for appliances that are based on a combined categorization of devices respecting both, the optimization of operating times as well as operation modes, e.g., of hybrid devices. To identify an evolutionary algorithm that promises to lead to good optimization results of the devices in our real-world lab environments, we compare four state-of-the-art algorithms in realistic simulations: ESPEA, NSGA-II, NSGA-III, and SPEA2. The results show that ESPEA and NSGA-II significantly outperform the other two algorithms in our scenario.
- National Institutes of Health United States
- Research Center for Information Technology Germany
- Center for Information Technology United States
- Research Center for Information Technology Germany
- Center for Information Technology United States
info:eu-repo/classification/ddc/330, 330, ddc:330, Economics
info:eu-repo/classification/ddc/330, 330, ddc:330, Economics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).11 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
