
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Advancement of Glass-Ceramic Materials for Photonic Applications
handle: 20.500.14243/330566
Advancement of Glass-Ceramic Materials for Photonic Applications Glasses, even if often considered a simple, passive, material, constitute an important piece of the photonic puzzle, where active and passive components have to be integrated in order to realize advanced devices able to play with the light at different scales, from the macro to micro and nano. A material group which is known since more than 60 years but was becoming of real interest in photonics only in the last decade is represented by glass-ceramics, namely materials containing one or more crystalline phases evenly distributed within the glass phase. Here a brief overview is presented of the compositions and properties of several glass ceramics, especially in thin-film format, which have been produced starting with a sol-gel process and have exhibited characteristics which are significant for several photonic applications.
- University of the Witwatersrand South Africa
- Nello Carrara Institute of Applied Physics Italy
- National Research Council Italy
- Istituto di Fotonica e Nanotecnologie Italy
photovoltaic, glass ceramics, integrated optics
photovoltaic, glass ceramics, integrated optics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
