Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-3-...
Part of book or chapter of book . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
UniSA Research Outputs Repository
Conference object . 2017 . Peer-reviewed
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On Battery Management Strategies in Multi-agent Microgrid Management

Authors: Roozbeh Morsali; Sajad Ghorbani; Rainer Unland; Rainer Unland; Ryszard Kowalczyk; Ryszard Kowalczyk;

On Battery Management Strategies in Multi-agent Microgrid Management

Abstract

Multi Agent Systems (MAS) have been incorporated in numerous engineering applications including power systems. In recent years, with the advancement in Information and Communication Technology (ICT), Internet of Things (IoT) and smarter devices, this concept has become more and more applicable to grid management. Microgrids, as part of distribution grid are subject to continuous variation in demand, generation and grid conditions. Also, due to private ownership of some or all part of the microgrid (at least in the demand side), and privacy concerns of data transmitted, intelligent and independent agents could be used in management process by representing each component of the grid as an agent. As the importance of storage systems (especially batteries) is increasing with the higher penetration of the renewable energy into the electricity grid, proper battery management becomes vital in efficient microgrid management. In this paper, we focus on battery agent and propose three strategies for battery management in the multi agent based microgrid management framework. We also investigate the effect of each strategy on the total costs as well as the battery itself. In this system, the agents of different components are independent and they collaboratively communicate with each other to fulfil a global objective which is set to be minimising the total costs.

Country
Australia
Keywords

management strategy, Computer Science, Information Systems, Wirtschaftswissenschaften, microgrid management, Computer Science, Theory & Methods, battery, multi-agent systems

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average