Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao NERC Open Research A...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-94...
Part of book or chapter of book . 2001 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Comparison of the Effects of Wet N Deposition (NH4Cl) and Dry N Deposition (NH3) on UK Moorland Species

Authors: Leith, Ian D.; Sheppard, Lucy; Pitcairn, Carole E.R.; Cape, J. Neil; Hill, PaulW.; Kennedy, Valerie H.; Tang, Y. Sim; +2 Authors

Comparison of the Effects of Wet N Deposition (NH4Cl) and Dry N Deposition (NH3) on UK Moorland Species

Abstract

Increases in N deposition (wet and dry) have been associated with a decline in seminatural plant communities, adapted for growth on nutrient poor soils in the UK and Europe. The impacts of N deposition applied as either wet NH4+ or gaseous NH3 on vegetation (7 species) from acid moorland in SE Scotland were compared in a dose-response study. Wet N deposition at 0, 8, 16, 32, 64, 128 kg N ha-1 y-1 was applied as NH4C1, and dry deposition as gaseous NH3 (2, 6, 20, 50, 90 μg NH3 m-3) under controlled conditions in open-top chambers. A strong linear doseresponse relationship (p<0.05) was found between foliar N content in all seven plant species and applied NH4-N. However, in the NH3 treatment, only C. vulgaris and P. commune showed a significant response to increasing N additions. NH3 was found to increase the rate of water loss in Calluna in both autumn and winter by comparison with wet deposition. For Eriophorum vaginatum, the NH3 and NH4+ treatments showed significant N dose response relationships for biomass. A significant increase in above ground biomass, proportional to the added N, was found for Narthecium ossifragum when N was applied as NH3 compared to NH4+.

Country
United Kingdom
Related Organizations
Keywords

580, biomass, NH3, moorland vegetation, NH4+, water loss, deposition, Ecology and Environment, Atmospheric Sciences

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research