Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Eindhoven University...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1007/978-98...
Part of book or chapter of book . 2024 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Digital Twin for the Energy Transition in Built Environment: Keyword Co-Occurrence Analysis

Keyword Co-Occurrence Analysis
Authors: Hua Du; Qi Han; Bauke de Vries;

Digital Twin for the Energy Transition in Built Environment: Keyword Co-Occurrence Analysis

Abstract

The built environment is responsible for a significant amount of energy consumption. Energy transition in the built environment is necessary for both sustainable development and energy security. Digital twin technologies are regarded as potential solutions for energy transition as they contribute to better energy management in buildings, communities, and cities. A literature review is conducted to investigate digital twin studies in the field of the built environment. It has been found that there has been significant growth in the number of digital twin studies since 2018. The keyword co-occurrence analysis was adopted to investigate the research topic and research trend. It is found that the studies of the digital twin in the context of built environment energy transition are insufficient, especially at the community level. The city-level digital twin studies either focus on transportation or buildings, and there is a limited number of studies about digital twin applications, especially at the city level. Moreover, studies failed to connect various aspects of a city system. More studies are needed to tackle digital twin application challenges and contribute to the energy transition.

Country
Netherlands
Keywords

Built environment, Keyword co-occurrence analysis, SDG 7 - Affordable and Clean Energy, Digital twin, Energy transition, SDG 7 – Betaalbare en schone energie, SDG 11 – Duurzame steden en gemeenschappen, SDG 11 - Sustainable Cities and Communities

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Related to Research communities
Energy Research