Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Metallurgical Transa...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Metallurgical Transactions A
Article . 1992 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Metallurgical Transactions A
Article . 1992 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effects of grain boundary chemistry on the Intergranular Cracking Behavior of Ni-16Cr-9Fe in High-Temperature Water

Authors: T. M. Angeliu; Gary S. Was; J. K. Sung;

Effects of grain boundary chemistry on the Intergranular Cracking Behavior of Ni-16Cr-9Fe in High-Temperature Water

Abstract

An experimental program is conducted to determine the role of carbon, chromium, and phosphorus on the intergranular (IG) cracking behavior of Ni-16Cr-9Fe in 360 °C argon and water. Both constant extension rate tensile (CERT) tests and constant load tensile (CLT) tests are used to determine the susceptibility to IG cracking. Results show that carbon in solution strongly suppresses IG cracking behavior through an increased resistance to power-law creep, which promotes failure by the formation and linkup of grain boundary voids. The mechanical deformation at 360 °C is very time dependent, with slower extension rates resulting in greater IG cracking and lower elongation due to the longer time afforded the creep process. Although creep-induced grain boundary fracture is dominant in both water and argon, there is a substantial environmental enhancement in water. Grain boundary carbides do not appear to play a primary role in the grain boundary deformation process. In both environments, addition of P to Ni-16Cr-9Fe improves the IG cracking resistance, but chromium depletion has no effect. Results imply that carbon in solution plays a critical role in strengthening and increasing resistance to creepinduced grain boundary void formation and fracture.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    47
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
47
Top 10%
Top 10%
Top 10%