Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Bulletin of Environm...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Bulletin of Environmental Contamination and Toxicology
Article . 2023 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A clay-coal fly ash based dual hydraulic-reactive liner for controlling acid mine drainage

Authors: Beven Mafoko; Willis Gwenzi; Nhamo Chaukura;

A clay-coal fly ash based dual hydraulic-reactive liner for controlling acid mine drainage

Abstract

Hydraulic liners are used to restrict hazardous leachates such as acid mine drainage (AMD) from entering the hydrogeological system. In this study, we hypothesized that: (1) a compacted mix ratio of natural clay and coal fly ash with a hydraulic conductivity of at most 1 × 10- 8 ms- 1 can be achieved, and (2) mixing clay and coal fly ash in the right proportion can result in increased contaminant removal efficiency of a liner system. The effects of adding coal fly ash to clay on the mechanical behavior, contaminant removal efficiency, and saturated hydraulic conductivity of the liner were investigated. All clay:coal fly ash specimen liners with less than 30% coal fly ash had significantly (p  0.05) on the results of clay:coal fly ash (7:3) specimen liners and compacted clay liner. The clay:coal fly ash mix ratios of 8:2 and 7:3 significantly (p < 0.05) reduced the leachate concentration of Cu, Ni, and Mn. The pH of AMD increased from an average of 2.14 to 6.80 after permeating through a compacted specimen of mix ratio 7:3. Overall, the 7:3 clay to coal fly ash liner showed superior pollutant removal capacity and its mechanical and hydraulic properties were comparable to compacted clay liners. This laboratory scale investigation emphasizes potential limitations with column scale evaluation of liners and provides new information on the application of dual hydraulic reactive liners for engineered hazardous waste disposal systems.

Keywords

Coal, Clay, Environmental Pollutants, Coal Ash, Refuse Disposal

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Related to Research communities
Energy Research