Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Electrical Engineeri...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Electrical Engineering
Article . 2024 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A new method for improving the solar photovoltaic unit efficiency through neem oil as coolant medium for high power applications—an experimental investigation

Authors: Karthikeyan Ganesan; Satheeshkumar Palanisamy; Suresh Muthusamy; Prabha Maheswari Muthusamy; Ponarun Ramamoorthi; Ranjith Kumar Ravi; Mizaj Shabil Sha; +1 Authors

A new method for improving the solar photovoltaic unit efficiency through neem oil as coolant medium for high power applications—an experimental investigation

Abstract

AbstractThe utilization of electric energy is rising in the technological world. Solar PV (photovoltaic) cells convert sunlight into electricity, and sunlight radiation also has heat, reducing the panel's efficiency. The heat should control the limited value or otherwise reduce the panel's performance so that heat is moved to the cooling medium, thus maintaining the heat within the functioning limit. The proposed method is explained by the probability of cooling the monocrystalline and polycrystalline structures used as neem oil through an integrated oil container fitted into the unit's backside—the neem oil acts as phase-changing material (PCM). The solar PV rear side neem oil absorbs the heat of the solar PV panel. The neem oil is not filled in the backside tank completely for the reason that the oil needed some breathing gap. The breathing gap of PCM is to enhance the heat-withstand efficiency. The backside neem oil is replaced every 30 min. As an outcome, the front side of solar PV heat is reduced. Neem oil has not polluted the environment and is thus also used to exchange noxious mineral oils. The neem oil moved from the depository tank to the backside of the unit and together into an additional depositor tank, thus being able to be reused. The proposed method is investigated, and functioning comparison occurs in different PV types, such as monocrystalline and polycrystalline modules, with various kinds of edible oil. Thus, the critical outcomes of the monocrystalline and polycrystalline PV panels are to decrease the panel temperature by 2.29% and 4.34%, respectively, and enhance the efficiency of the PV panels by 15.0% and 17.8%, respectively.

Country
Qatar
Keywords

Efficiency, 530, Photovoltaic/thermal, Neem oil, Output power, PV cooling

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
hybrid