Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Analytical and Bioan...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Analytical and Bioanalytical Chemistry
Article . 2025 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Pressurized fluid extraction of bioactive compounds from peanut by-products to promote waste recovery and circular economy

Authors: Clara Schumann; Beatriz Martín-Gómez; Ana Jano; Ana M. Ares; José Bernal;

Pressurized fluid extraction of bioactive compounds from peanut by-products to promote waste recovery and circular economy

Abstract

This work is based on the development and optimization of a pressurized liquid extraction method to obtain extracts from peanut shells with the highest possible amount/number of bioactive compounds, mainly flavonoids, with senolytic activity and antioxidant capacity. To achieve optimal extraction conditions, a design of experiments approach was employed to perform a limited and relatively reduced number of experiments. The extracts were consecutively analyzed by methods adapted to the peanut shell matrix to determine antioxidant capacity, total flavonoids, and total phenolic compounds. Additionally, a high-performance liquid chromatography coupled with diode array detection method was developed and validated to quantify individual phenolic compounds, with confirmation provided by mass spectrometry. Moreover, amino acid profiling was performed using gas chromatography coupled with mass spectrometry. Finally, the optimized extraction conditions and analytical methods were applied to analyze six commercial peanut shell samples. The results indicate that the optimized pressurized liquid extraction method using ethanol effectively extracts substantial amounts of bioactive compounds, especially flavonoids, which have broad applications across different industries. This contributes to a strategic valorization approach that promotes a Circular Economy.

Related Organizations
Keywords

Flavonoids, Arachis, Phenols, Ethanol, Plant Extracts, Seeds, Green Chemistry Technology, Amino Acids, Solid Waste, Chromatography, High Pressure Liquid, Antioxidants

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research