Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Heat and Mass Transf...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Heat and Mass Transfer
Article . 2015 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental investigation of buoyancy effects on convection heat transfer of supercritical CO2 flow in a horizontal tube

Authors: Katsuyoshi Tanimizu; Reza Sadr;

Experimental investigation of buoyancy effects on convection heat transfer of supercritical CO2 flow in a horizontal tube

Abstract

The heat transfer characteristics of supercritical carbon dioxide (S-CO2) turbulent flow were investigated experimentally in a horizontal circular pipe with an inner diameter of 8.7 mm. Local convection coefficients and Nusselt numbers of the flow were obtained at different locations along the pipe with a constant heat flux ranging from 16 to 64 kW/m2. Experiments were performed for fluid mass flow rate ranging from 0.011 to 0.017 kg/s, an inlet fluid temperature ranging from 24 to 28 °C, and a flow pressure ranging from 7.5 to 9.0 MPa to investigate their effects on the convection heat transfer in the pipe. Both enhancement as well as deterioration in the heat transfer coefficient was observed for the flow conditions examined in this work. Experimental results were then compared with the widely used empirical correlation for pipe flow. Three commonly used buoyancy parameters were utilized to investigate their applicability in the present test conditions. Results indicate that all the parameters show a strong presence of buoyancy effects in the present test conditions. The trend and magnitude of these parameters, however, do not agree with the trend and magnitude of heat transfer enhancement and deterioration along the pipe.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    88
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
88
Top 1%
Top 10%
Top 10%