
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Production of sophorolipids with enhanced volumetric productivity by means of high cell density fermentation

pmid: 22987201
To achieve high time-space efficiency for sophorolipid production with yeast Candida bombicola, a strategy of high cell density fermentation was employed. The approach consisted of two sequential stages: (1) the optimization of the carbon source and the nutrient concentration to achieve the maximal cell density and (2) the computer-aided adjustment of physical parameters and the controlled feeding of substrates for enhanced volumetric productivity. Both stages have been successfully implemented in a 10-L fermenter, where up to 80 g dry cell weight/L was obtained and a remarkably high volumetric productivity (> 200 g isolated sophorolipids/L/day) was achieved. Both the biomass and volumetric productivity were markedly higher than previously reported. Specifically, the high productivity of sophorolipids could be attained on a very short time scale (24 h), highlighting the industrial potential of the platform developed in this work.
- Aarhus University Denmark
- Jilin University China (People's Republic of)
- Jilin University China (People's Republic of)
Time Factors, Cell Count, Lipid Metabolism, Culture Media, Fermentation, Biomass, Biotechnology, Candida
Time Factors, Cell Count, Lipid Metabolism, Culture Media, Fermentation, Biomass, Biotechnology, Candida
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).52 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
