Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Microbiology...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Microbiology and Biotechnology
Article . 2017 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermodynamics of enzyme-catalyzed esterifications: I. Succinic acid esterification with ethanol

Authors: Emrah Altuntepe; Thorsten Greinert; Felix Hartmann; Annika Reinhardt; Gabriele Sadowski; Christoph Held;

Thermodynamics of enzyme-catalyzed esterifications: I. Succinic acid esterification with ethanol

Abstract

Succinic acid (SA) was esterified with ethanol using Candida antarctica lipase B immobilized on acrylic resin at 40 and 50 °C. Enzyme activity in the reaction medium was assured prior to reaction experiments. Reaction-equilibrium experiments were performed for varying initial molalities of SA and water in the reaction mixtures. This allowed calculating the molality-based apparent equilibrium constant K m as function of concentration and temperature. K m was shown to depend strongly on the molality of water and SA as well as on temperature. It could be concluded that increasing the molality of SA shifted the reaction equilibrium towards the products. Water had a strong effect on the activity of the enzyme and on K m . The concentration dependence of K m values was explained by the activity coefficients of the reacting agents. These were predicted with the thermodynamic models Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT), NRTL, and Universal Quasichemical Functional Group Activity Coefficients (UNIFAC), yielding the ratio of activity coefficients of products and reactants K γ . All model parameters were taken from literature. The models yielded K γ values between 25 and 115. Thus, activity coefficients have a huge impact on the consistent determination of the thermodynamic equilibrium constants K th. Combining K m and PC-SAFT-predicted K γ allowed determining K th and the standard Gibbs energy of reaction as function of temperature. This value was shown to be in very good agreement with results obtained from group contribution methods for Gibbs energy of formation. In contrast, inconsistencies were observed for K th using K γ values from the classical gE-models UNIFAC and NRTL. The importance of activity coefficients opens the door for an optimized reaction setup for enzymatic esterifications.

Related Organizations
Keywords

Esterification, Ethanol, Succinic Acid, Temperature, Water, Lipase, Hydrogen-Ion Concentration, Enzymes, Immobilized, Fungal Proteins, Kinetics, Biocatalysis, Thermodynamics

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%