Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Polymer Bulletin
Article . 2024 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Effect of concentrated solar radiation on the accelerated degradation of poly(ethylene terephthalate) using a compound parabolic concentrator (CPC)

Authors: Alegría Mejía, Lol-chen; Sánchez Pozos, Miriam; León Albiter, Noel; Baeza Alvarado, María D.; Lugo Uribe, Luis E.;

Effect of concentrated solar radiation on the accelerated degradation of poly(ethylene terephthalate) using a compound parabolic concentrator (CPC)

Abstract

The effects of concentrated solar radiation on the thermal, chemical, and mechanical properties of post-consumer poly(ethylene terephthalate) (PET) films are studied in the present research work. The films were exposed to solar radiation using a compound parabolic concentrator (CPC), and the results are compared with those obtained from exposing PET films to conditions established in an accelerated weathering chamber (QUV). The CPC and QUV were evaluated on specimens measuring 2¿×¿13¿×¿0.5 cm3. Exposure in the CPC was carried out over one year during the periods of February–April, May–July, and October–December. Additionally, in the QUV, the equivalence in hours of exposure to that used in the CPC was sought. The results obtained by differential scanning calorimetry (DSC) indicate a significant increase in crystallinity in the material exposed within CPC, while specimens in QUV exhibited effects related to physical aging. Information obtained from thermogravimetric analysis (TGA) showed a decrease in thermal stability and maximum degradation temperature of the exposed specimens, with a trend consistent with DSC. Intensity decreased in the infrared spectra of films exposed in the CPC, without absorption bands of photo- or thermodegradation. The intrinsic viscosity of specimens exposed to degradation showed a maximum reduction of 17%, attributed to polymeric chain cleavage due to photodegradation. The dynamic mechanical analysis (DMA) evidenced a deterioration in the elastic response of the material, particularly in the one subjected to solar concentration, which is aligned with the surface cracking observed by scanning electron microscopy.

Award-winning

Country
Spain
Keywords

570, Àrees temàtiques de la UPC::Enginyeria dels materials, Radiació solar, Polymers, Solar radiation, 530, Polímers

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 30
  • 30
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
0
Average
Average
Average
30
Green
Related to Research communities
Energy Research