
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Physiological meaning of bimodal tree growth-climate response patterns

AbstractCorrelation coefficients are widely used to identify and quantify climate signals in proxy archives. Significant relationships between tree-ring chronologies and meteorological measurements are typically applied by dendroclimatologists to distinguish between more or less relevant climate variation for ring formation. While insignificant growth-climate correlations are usually found with cold season months, we argue that weak relationships with high summer temperatures not necessarily disprove their importance for xylogenesis. Here, we use maximum latewood density records from ten treeline sites between northern Scandinavia and southern Spain to demonstrate how monthly growth-climate correlations change from narrow unimodal to wide bimodal seasons when vegetation periods become longer and warmer. Statistically meaningful relationships occur when minimum temperatures exceed ‘biological zero’ at around 5° C. We conclude that the absence of evidence for statistical significance between tree growth and the warmest summer temperatures at Mediterranean sites is no evidence of absence for the physiological importance of high summer temperatures for ring formation. Since correlation should never be confused with causation, statistical values require mechanistic understanding, and different interpretations are needed for insignificant correlations within and outside the growing season.
- Academy of Sciences Library Czech Republic
- Academy of Sciences Library Czech Republic
- Instituto de Investigación en Cambio Global Spain
- Czech Academy of Sciences Czech Republic
- University of Cambridge United Kingdom
ring width, Dendrochronology, Global warming, Short Communication, Climate, Tree rings, Temperature, Scandinavian and Nordic Countries, Trees, Spain, Climate change, Seasons, Forest ecology
ring width, Dendrochronology, Global warming, Short Communication, Climate, Tree rings, Temperature, Scandinavian and Nordic Countries, Trees, Spain, Climate change, Seasons, Forest ecology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
