Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
International Journal of Biometeorology
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Outpacing climate change: adaptation to heatwaves in Europe

Authors: Marcin Piotr Walkowiak; Karol Bandurski; Jarosław Walkowiak; Dariusz Walkowiak;

Outpacing climate change: adaptation to heatwaves in Europe

Abstract

Abstract Current predictions of climate change impacts rely on conservative assumptions about a lack of adaptation, projecting significantly increased heatwave mortality. However, long-term studies have shown a decline in actual heatwave deaths, raising questions about the underlying mechanisms. We combined Eurostat weekly mortality data (baseline extracted via Seasonal-Trend decomposition by Loess and smoothed through Principal Component Analysis dimension reduction and reconstruction) with economic indicators, Copernicus temperature data since 1950, and ENTSO-E electricity demand data. Panel regression analyzed mortality patterns during weeks with daily temperatures exceeding 22 °C for 2000–2022. During the analyzed period, Europe outpaced climate change, with the capacity to tolerate an additional 1 °C rise every 17.9 years [95% CI 15.3–22.7]. Extending the temperature indicators beyond the prior 3 years did not enhance predictive accuracy, suggesting swift adaptations and historical climate lacked any predictive value. Additionally, increasing economic output, likely driven by infrastructural improvements, especially greater affordability of air conditioning, enabled tolerating each additional 1 °C due to a per capita GDP increase of 19.7 thousand euros [95% CI 14.6–30.3]. Consistently, the increase in cooling energy demand was the strongest in eastern Europe. The findings shed light on the mechanisms driving the observed reduction in heatwave mortality despite the warming climate trend, offering a more plausible basis for extrapolation than assuming a lack of adaptation. The model emphasizes the role of long term economic growth and addressing energy poverty.

Keywords

Europe, Original Paper, Hot Temperature, Climate Change, Humans, Extreme Heat, Mortality

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid
Related to Research communities
Energy Research