
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Effective long short-term memory with fruit fly optimization algorithm for time series forecasting

A number of recent studies have adopted long short-term memory (LSTM) in extensive applications, such as handwriting recognition and time series prediction, with considerable success. However, the parameters of LSTM have greatly influenced its accuracy and performance. In this study, LSTM with fruit fly optimization algorithm (FOA), called FOA-LSTM, is designed to solve time series problems. As a novel intelligent algorithm, FOA is applied to decide on the optimal hyper-parameter of LSTM. Experiments under the NN3 time series, three comparative experiments and the monthly energy consumption of the USA are conducted to verify the effectiveness of the FOA-LSTM model. The results indicate that the symmetric mean absolute percentage error (SMAPE) is reduced by up to 11.44% in the last 11 monthly series in the NN3 dataset. Four comparative experiments and the real-life series verify further that the FOA-LSTM model obtains a better result compared with other forecasting models.
- Huazhong University of Science and Technology China (People's Republic of)
- Shaanxi Normal University China (People's Republic of)
- Shaanxi Normal University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).67 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
