Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.2...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.21203/rs.3....
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Soft Computing
Article . 2023 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

Stability assessment using adaptive interval type-2 fuzzy sliding mode controlled power system stabilizer

Authors: orcid Dipak R Swain;
Dipak R Swain
ORCID
Harvested from ORCID Public Data File

Dipak R Swain in OpenAIRE
PRAKASH K RAY; Ranjan K Jena; orcid SHIBA R PAITAL;
SHIBA R PAITAL
ORCID
Harvested from ORCID Public Data File

SHIBA R PAITAL in OpenAIRE

Stability assessment using adaptive interval type-2 fuzzy sliding mode controlled power system stabilizer

Abstract

Abstract The low frequency electromechanical oscillations (LFEOs) in electric power system are because of weaker inter-ties, uncertainties, various faults and disturbances. These LFEOs (0.2-3 Hz.) are less in magnitude and are responsible for lower power transfer, increased losses and also threaten the stability of power system. An adaptive interval type-2 fuzzy sliding mode controlled power system stabilizer (AIT2FSMC-PSS) is presented to neutralize the LFEOs and enhance stability under uncertainties and external disturbances. The AIT2FSMC is a hybridization of type-2 fuzzy logic system (T2FLS) with conventional SMC to lower the chattering effect, enhance the robustness of reaching phase and improve system’s performance. Here, T2FLS is used for estimating the unknown functions of SMC. A robust sliding surface is presented to keep the system in the desired plane and remain stable under disturbance conditions. A modified control law is proposed for selecting the control parameters and Lyapunov synthesis is used to make the error asymptotically converging to zero. The effectiveness of the AIT2FSMC-PSS is accessed in single and multimachine power systems subjected to various uncertainties and disturbances. Again, comparison of performance indices (PIs), Eigen values, damping ratios, oscillating frequencies, integral time absolute error (ITAE), figure of demerit (FD) and frequency domain plots like Bode, root locus and Nyquist plots are also analyzed to access the efficacy of the proposed stabilizer. The simulated responses, comparative study and frequency plots conform the supremacy of the proposed AIT2FSMC-PSS in suppressing the LFEOs with lesser settling characteristics, offer stable performance and assures transient stability of power system as compared to other stabilizers.

Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
hybrid