
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Multi-objective orthogonal opposition-based crow search algorithm for large-scale multi-objective optimization

Many engineering optimization problems are typically multi-objective in their natures and multidisciplinary with a large number of decision variables. Furthermore, Pareto dominance loses its effectiveness in such situations. Thus, developing a robust optimization algorithm undoubtedly becomes a true challenge. This paper proposes a multi-objective orthogonal opposition-based crow search algorithm (M2O-CSA) for solving large-scale multi-objective optimization problems (LSMOPs). In the M2O-CSA, a multi-orthogonal opposition strategy is employed to mitigate the conflicts among the convergence and distribution of solutions. First, two individuals are randomly chosen to undergo the crossover stage and then orthogonal array is presented to obtain nine individuals. Then individuals are used in the opposition stage to improve the diversity of solutions. The effectiveness of the proposed M2O-CSA is investigated by implementing it on different dimensions of multi-objective optimization problems (MOPs). The Pareto front solutions of these MOPs have various characteristics such as convex, non-convex and discrete. It is also applied to solve multi-objective design applications with distinctive features such as four bar truss (FBT) design, welded beam (WB) deign, disk brake (DB) design, and speed reduced (SR) design, where they involve different characteristics. In this context, a new decision making tool based on multi-objective optimization on the basis of ratio analysis (MOORA) technique is employed to help the designer for extracting the operating point as the best compromise or satisfactory solution to execute the candidate engineering design. Simulation results affirm that the proposed M2O-CSA works efficiently and effectively.
- Koszalin University of Technology Poland
- Menoufia University Egypt
- Cairo University Egypt
- Menoufia University Egypt
- Koszalin University of Technology Poland
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).54 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
