
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Deep Learning-based approach for forecasting off-gas production and consumption in the blast furnace

AbstractThis article presents the application of a recent neural network topology known as the deep echo state network to the prediction and modeling of strongly nonlinear systems typical of the process industry. The article analyzes the results by introducing a comparison with one of the most common and efficient topologies, the long short-term memories, in order to highlight the strengths and weaknesses of a reservoir computing approach compared to one currently considered as a standard of recurrent neural network. As benchmark application, two specific processes common in the integrated steelworks are selected, with the purpose of forecasting the future energy exchanges and transformations. The procedures of training, validation and test are based on data analysis, outlier detection and reconciliation and variable selection starting from real field industrial data. The analysis of results shows the effectiveness of deep echo state networks and their strong forecasting capabilities with respect to standard recurrent methodologies both in terms of training procedures and accuracy.
- Tata Steel (India) India
- Tata Steel (India) India
- Sant'Anna School of Advanced Studies Italy
Special issue on Advances of Neural Computing phasing challenges in the era of 4th industrial revolution, Blast furnace gas management; Deep echo state networks; Forecasting; Industrial application; Long short-term memories; Recurrent neural networks
Special issue on Advances of Neural Computing phasing challenges in the era of 4th industrial revolution, Blast furnace gas management; Deep echo state networks; Forecasting; Industrial application; Long short-term memories; Recurrent neural networks
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).26 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
