Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Solid Sta...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Solid State Electrochemistry
Article . 2004 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Transpassive dissolution mechanism of ferrous alloys in phosphoric acid/acetic acid mixtures

Authors: Iva Betova; Tz. Tzvetkoff; Martin Bojinov;

Transpassive dissolution mechanism of ferrous alloys in phosphoric acid/acetic acid mixtures

Abstract

The transpassive dissolution of Fe-12%Cr and Fe-25%Cr alloys in near-anhydrous phosphoric acid/acetic acid mixtures has been studied by conventional voltammetry and electrochemical impedance spectroscopy. Both steady-state and transient techniques point to two parallel pathways for the process involving oxidative dissolution of Cr as Cr(VI) and isovalent dissolution of Fe most probably mediated by an electrolyte-originating species. A simplified kinetic model of the process including only surface kinetic steps has been found to reproduce successfully both the steady-state and the small-amplitude AC response of the studied materials. The kinetic parameters of the model are determined and their relevance regarding the influence of the alloy and electrolyte composition on the relative importance of the two parallel pathways is discussed. The experimental data and model calculations indicate that the effect of acetic acid on the reaction steps related to dissolution of Fe is more significant.

Keywords

transpassive dissolution, electrochemical impedance spectroscopy, surface reactions, kinetic model, iron-chromium alloys

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Average
Average
Average
bronze