Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Open Access Reposito...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
The European Physical Journal A
Article . 1998 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electron screening in backward elastic scattering

Authors: Schumann F; Zavatarelli S; GIALANELLA, Lucio; Greife U; Junker M; Rogalla D; Rolfs C; +2 Authors

Electron screening in backward elastic scattering

Abstract

The elastic scattering cross sections, σ (E,θ), for the systems He+Ta and He+W have been measured at θlab=165° and Elab=76.1 keV to 3.988 MeV using targets with a thickness of a few atomic layers. The results are smaller than the results given by the Rutherford scattering law, σR(E,θ), due to the effects of electron screening and can be described by σ(E,θ)/σR(E,θ)=(1+Ue/E)−1, where Ue is an atomic screening potential energy. The deduced average value, Ue=28 ± 3 keV, is consistent with the Moliere- and Lenz-Jensen-models as well as electron binding energies.

Country
Italy
Keywords

Nuclear and High Energy Physics, Energy Research

Powered by OpenAIRE graph
Found an issue? Give us feedback
Related to Research communities
Energy Research