
Found an issue? Give us feedback
Clean Technologies and Environmental Policy
Article . 2012 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Please grant OpenAIRE to access and update your ORCID works.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
This Research product is the result of merged Research products in OpenAIRE.
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
All Research products
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
For further information contact us at helpdesk@openaire.eu
Thermal seawater desalination based on self-heat recuperation

Authors: Akira Kishimoto; Hiroyuki Mizuno; Yasuki Kansha; Atsushi Tsutsumi;
Abstract
Recently a novel self-heat recuperation (SHR) technology has been developed for energy saving. In the SHR process, both sensible heat and latent heat are circulated by compression work. Energy consumption is thereby drastically reduced. Using this technology, a new thermal desalination process is developed for reducing energy consumption. The energy required for this SHR-based process is explained by process simulation. It requires ~1/4 the energy of the conventional multi-stage flash desalination process, which is the most widely used thermal desalination. Thus, the proposed thermal desalination process is promising for application in industrial plants.
Related Organizations
- University of Tokyo Japan
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).10 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average

Found an issue? Give us feedback
citations
Citations provided by BIP!
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
popularity
Popularity provided by BIP!
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
10
Top 10%
Average
Average
Beta
Fields of Science (3) View all
Fields of Science
Related to Research communities
Energy Research