
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Retrofit process heat transfer enhancement to upgrade performance, throughput and reduced energy use

This paper summarises the views and experi- ence of two companies specialising in providing technical solutions for increasing the performance of heat exchangers used in the process industries. It comments on the technical opportunities available to a processor to reduce overall energy use. Emphasis is made on the use of enhancement technologies retrofitted to existing heat exchangers, a sce- nario subsequently illustrated in associated case studies from either company. Enhancing heat transfer in existing and new heat exchangers constitutes a retrofit approach that can address some of the problems faced in a typical heat exchanger network (HEN). The paper thus demonstrates some of the driving forces leading companies to invest in saving energy, and sets out the benefits stemming from the use of process enhancement technologies. It concludes with the view that the most financially viable means of improving HEN efficiency frequently involves addressing the operation of existing heat exchangers first (by improv- ing their performance via various retrofit/revamping options). Only when such options have been exhausted should end-users consider the usually much more costly and operationally difficult option of purchasing and maintaining more plant.
- University of Salford United Kingdom
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
