
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
SAHPPA: a novel power pinch analysis approach for the design of off-grid hybrid energy systems

This work proposes a novel approach called stand-alone hybrid system power pinch analysis (SAHPPA), which is particularly applicable for the design of off-grid distributed energy generation systems. The enhanced graphical tool employs new ways of utilising the recently introduced demand composite curve and supply composite curve while honouring and adapting fundamental energy systems engineering concepts. The SAHPPA method is capable of optimising the capacity of both the power generators and energy storage for biomass (i.e. non-intermittent) and solar photovoltaic (i.e. intermittent) energy technologies, which is a contribution to the emerging area of power pinch analysis. In addition, the procedure considers all possible efficiency losses in the overall system encompassing the charging–discharging and current inversion processes.
- Universiti Teknologi MARA Malaysia
- Imperial College London United Kingdom
- Universiti Teknologi Petronas Malaysia
- Universiti Teknologi MARA Malaysia
- University of Pannonia Hungary
TP Chemical technology
TP Chemical technology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).42 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
