Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ABACUS. Repositorio ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Clean Technologies and Environmental Policy
Article . 2018 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A novel integrated decision-making approach for the evaluation and selection of renewable energy technologies

Authors: Morteza Yazdani; Prasenjit Chatterjee; Edmundas Kazimieras Zavadskas; Dalia Streimikiene;

A novel integrated decision-making approach for the evaluation and selection of renewable energy technologies

Abstract

The decision-making in energy sector involves finding a set of energy sources and conversion devices to meet the energy demands in an optimal way. Making an energy planning decision involves the balancing of diverse ecological, social, technical and economic aspects across space and time. Usually, technical and environmental aspects are represented in the form of multiple criteria and indicators that are often expressed as conflicting objectives. In order to attain higher efficiency in the implementation of renewable energy (RE) systems, the developers and investors have to deploy multi-criteria decision-making techniques. In this paper, a novel hybrid Decision Making Trial and Evaluation Laboratory and analytic network process (DEMATEL-ANP) model is proposed in order to stress the importance of the evaluation criteria when selecting alternative REs and the causal relationships between the criteria. Finally, complex proportional assessment and weighted aggregated sum product assessment methods are used to assess the performances of the REs with respect to different evaluating criteria. An illustrative example from Costs assessment of sustainable energy systems (CASES) project, financed by European Commission Framework 6 programme (EU FM 6) for EU member states is presented in order to demonstrate the application feasibility of the proposed model for the comparative assessment and ranking of RE technologies. Sensitivity analysis, result validation and critical outcomes are provided as well to offer guidelines for the policy makers in the selection of the best alternative RE with the maximum effectiveness.

Country
Spain
Keywords

330, Fuente de energía renovable, Recursos energéticos renovables, Toma de decisiones multicriterio, Toma de decisiones

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    69
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
69
Top 1%
Top 10%
Top 1%
Green