
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Quantifying biodiversity impacts of climate change and bioenergy: the role of integrated global scenarios

handle: 10138/136191
The role of bioenergy in climate change mitigation is a topic of heated debate, as the demand for land may result in social and ecological conflicts. Biodiversity impacts are a key controversy, given that biodiversity conservation is a globally agreed goal under pressure due to both climate change and land use. Impact assessment of bioenergy in various socio-economic and policy scenarios is a crucial basis for planning sound climate mitigation policy. Empirical studies have identified positive and negative local impacts of different bioenergy types on biodiversity, but ignored indirect impacts caused by displacement of other human activities. Integrated assessment models (IAMs) provide land-use scenarios based on socio-economic and policy storylines. Global scenarios capture both direct and indirect land-use change, and are therefore an appealing tool for assessing the impacts of bioenergy on biodiversity. However, IAMs have been originally designed to address questions of a different nature. Here, we illustrate the properties of IAMs from the biodiversity conservation perspective and discuss the set of questions they could answer. We find IAMs are a useful starting point for more detailed regional planning and assessment. However, they have important limitations that should not be overlooked. Global scenarios may not capture all impacts, such as changes in forest habitat quality or small-scale landscape structure, identified as key factors in empirical studies. We recommend increasing spatial accuracy of IAMs through region-specific, complementary modelling, including climate change into predictive assessments, and considering future biodiversity conservation needs in assessments of impacts and sustainable potentials of bioenergy.
- Netherlands Environmental Assessment Agency Netherlands
- Utrecht University Netherlands
- Netherlands Environmental Assessment Agency Netherlands
- University of Helsinki Finland
Mitigation, Impact assessment, Biodiversity, Conservation, Ecology, evolutionary biology, Taverne, SDG 13 - Climate Action, Bioenergy, Adaptation, SDG 15 - Life on Land
Mitigation, Impact assessment, Biodiversity, Conservation, Ecology, evolutionary biology, Taverne, SDG 13 - Climate Action, Bioenergy, Adaptation, SDG 15 - Life on Land
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
