
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Rotational pasture management to increase the sustainability of mountain livestock farms in the Alpine region

handle: 20.500.14243/532664
AbstractOver the past 30 years, farming in the Alpine region has undergone important changes: the average number of animals per farm and the use of external inputs have increased while the diversity of farming practices has decreased, becoming similar to intensive farming. This change has led to a reduction in the supply of agroecosystem services and the sustainability of the mountain livestock sector. In this study, we investigated rotational grazing as alternative to continuous grazing to improve the sustainability of mountain farming practices. Greenhouse gas (GHG) emissions such as carbon dioxide, methane and nitrous oxide were measured together with soil properties (bulk density, saturated hydraulic conductivity, organic carbon content and plant biomass) for two grazing seasons using static chambers. The results showed that rotational grazing had a positive impact on plant biomass: minimize soil disturbance, reduce compaction and GHG emissions of the soil and increase water infiltration. Therefore, this practice has revealed clear benefits in terms of soil protection and climate change mitigation and adaptation.
Soil carbon stock, Rotational grazing, Greenhouse gas emissions, Carbon cycle, Agroecology
Soil carbon stock, Rotational grazing, Greenhouse gas emissions, Carbon cycle, Agroecology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).20 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
