
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Catalytic hydrothermal depolymerization of nylon 6

Depolymerization of nylon 6 to produce e-caprolactam using an environmentally friendly heteropoly acid catalyst was studied at temperatures between 553 and 603 K in water. The products of depolymerization were analyzed qualitatively and quantitatively by means of mass spectrometry and high-performance liquid chromatography. The results showed that the depolymerized product was mainly e-caprolactam with a little 6-aminocaproic acid and oligomers. The phosphotungstic heteropoly acid used as a catalyst can improve the hydrolysis rate and yield of e-caprolactam. The optimum hydrolysis conditions for e-caprolactam yield were as follows: phosphotungstic heteropoly acid content, 3%; reaction temperature, 573 K; and reaction time, 85 min. Under these conditions, the yield of e-caprolactam was 77.96%. In the temperature range 553–603 K, the activation energy of 3% phosphotungstic heteropoly acid-catalyzed depolymerization was evaluated as 77.38 kJ/mol, which is lower than the 86.64 kJ/mol value for no catalyst.
- Shanghai University China (People's Republic of)
- Nanjing University China (People's Republic of)
- Shanghai University China (People's Republic of)
- Nanjing University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).35 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
