Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Annals of Operations...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Annals of Operations Research
Article . 2022 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A multi-criteria decision support model for adopting energy efficiency technologies in the iron and steel industry

Authors: Hongtao Ren; Wenji Zhou; Marek Makowski; Shaohui Zhang; Yadong Yu; Tieju Ma;

A multi-criteria decision support model for adopting energy efficiency technologies in the iron and steel industry

Abstract

Promoting energy efficiency in iron and steel production provides opportunities for mitigating environmental impacts from this energy-intensive industry. Energy efficiency technologies differ in investment costs, fuel-saving potentials, and environmental performance. Hence the decision-making of the adoption strategy needs to prioritize technological combinations concerning these multi-dimensional objectives. To address this problem, this study proposes a hybrid multi-criteria decision-support model for adopting energy efficiency technologies in the iron and steel industry. The modeling framework integrates a linear programming model that determines the optimal technology adoption rates based on the techno-economic, energy, and environmental performance details and an interactive multi-criteria model analysis tool for diverse modeling environments. A real case study was performed in which a total number of 56 energy efficiency technologies were investigated against various criteria concerning economics, energy, and environmental performances. The results examine the tradeoffs and synergies were examined with regard to seven criteria. A balanced solution shows that a total investment of 13.4 billion USD could save 2.51 Exajoule fuel consumption, cut 67.4 million tons (Mton) CO2 emissions, and reduce air pollution of 1.5 Mton SO2, 1.41 Mton NOx, and 0.86 Mton PM, respectively. The case study demonstrates the effectiveness and applicability of the proposed multi-criteria decision-making support framework.

Related Organizations
Keywords

690, 330

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Average
Average
Average