
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
MOSHEPO: a hybrid multi-objective approach to solve economic load dispatch and micro grid problems

This paper proposes a novel hybrid multi-objective algorithm named Multi-objective Spotted Hyena and Emperor Penguin Optimizer (MOSHEPO) for solving both convex and non-convex economic dispatch and micro grid power dispatch problems. The proposed algorithm combines two newly developed bio-inspired optimization algorithms namely Multi-objective Spotted Hyena Optimizer (MOSHO) and Emperor Penguin Optimizer (EPO). MOSHEPO contemplates many non-linear characteristics of power generators such as transmission losses, multiple fuels, valve-point loading, and prohibited operating zones along with their operational constraints, for practical operation. To evaluate the effectiveness of MOSHEPO, the proposed algorithm has been tested on various benchmark test systems and its performance is compared with other well-known approaches. The experimental results demonstrate that the proposed algorithm outperforms other algorithms with low computational efforts while solving economic and micro grid power dispatch problems.
- Cork College of Commerce Ireland
- Cork College of Commerce Ireland
- Thapar University India
- Thapar University India
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).97 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
