Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IRIS - Università de...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Applied Intelligence
Article . 2022 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Generation and interpretation of parsimonious predictive models for load forecasting in smart heating networks

Authors: Alberto Castellini; Federico Bianchi; Alessandro Farinelli;

Generation and interpretation of parsimonious predictive models for load forecasting in smart heating networks

Abstract

Forecasting future heat load in smart district heating networks is a key problem for utility companies that need such predictions for optimizing their operational activities. From the statistical learning viewpoint, this problem is also very interesting because it requires to integrate multiple time series about weather and social factors into a dynamical model, and to generate models able to explain the relationships between weather/social factors and heat load. Typical questions in this context are: “Which variables are more informative for the prediction?” and “Do variables have different influence in different contexts (e.g., time instant or situations)?” We propose a methodology for generating simple and interpretable models for heat load forecasting, then we apply this methodology to a real dataset, and, finally, provide new insight about this application domain. The methodology merges multi-equation multivariate linear regression and forward variable selection. We generate a (sparse) equation for each pair day-of-the-week/hour-of-the-day (for instance, one equation concerns predictions of Monday at 0.00, another predictions of Monday at 1.00, and so on). These equations are simple to explain because they locally approximate the prediction problem in specific times of day/week. Variable selection is a key contribution of this work. It provides a reduction of the prediction error of 2.4% and a decrease of the number of parameters of 49.8% compared to state-of-the-art models. Interestingly, different variables are selected in different equations (i.e., times of the day/week), showing that weather and social factors, and autoregressive variables with different delays, differently influence heat predictions in different times of the day/week.

Country
Italy
Related Organizations
Keywords

Time series forecasting, Multivariate models, Variable selection, Smart grids, District heating networks

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    6
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
6
Top 10%
Average
Top 10%
Green