Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biotechnology Letter...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biotechnology Letters
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Enhanced nitrogen removal in bio-electrochemical systems by pH control

Authors: Peter Clauwaert; Nico Boon; Caitlyn Shea; Willy Verstraete; Robert Nerenberg; Joachim Desloover;

Enhanced nitrogen removal in bio-electrochemical systems by pH control

Abstract

Microbial fuel cells can be designed to remove nitrogenous compounds out of wastewater, but their performance is at present limited to 0.33 kg NO(3) (-)-Nm(-3) net cathode compartment (NCC) d(-1). By maintaining the pH in the cathode at 7.2, nitrogen removal was increased from 0.22 to 0.50 kg NO(3) (-)-Nm(-3) NCC d(-1). Bio-electrochemical active microorganisms seem to struggle with the deterioration of their own environment due to slow proton fluxes. Therefore, the results suggest that an appropriate pH adjustment strategy is necessary to allow a sustained and enhanced biological activity in bio-electrochemical systems.

Related Organizations
Keywords

Bioelectric Energy Sources, Nitrogen, Hydrogen-Ion Concentration, Electricity, Water Microbiology

Powered by OpenAIRE graph
Found an issue? Give us feedback