Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Biodegradationarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biodegradation
Article . 2009 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Biodegradation
Article . 2010
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

The inhibitory effect of antimicrobial zeolite on the biofilm of Acidithiobacillus thiooxidans

Authors: Tesfaalem Haile; George Nakhla;

The inhibitory effect of antimicrobial zeolite on the biofilm of Acidithiobacillus thiooxidans

Abstract

The inhibitory effect of antimicrobial zeolite coated concrete specimens (Z2) against Acidithiobacillus thiooxidans was studied by measuring biomass dry cell weight (DCW), biological sulphate generation, and oxygen uptake rates (OURs). Uncoated (UC), and blank zeolite coated without antimicrobial agent (ZC) concrete specimens were used as controls. The study was undertaken by exposing inoculated basal nutrient medium (BNM) to the various specimens. The coating material was prepared by mixing zeolite, epoxy and cure with ratios, by weight of 2:2:1. Concrete specimens were characterized before and after exposure to inoculated or sterile BNM by field emission-scanning electron microscopy (FE-SEM). Gypsum, which was absent in the other test concrete specimens, was detected in uncoated specimens exposed to the bacterium. In UC and ZC, the growth of the bacteria increased throughout the duration of the experiment. However, significant biomass inhibition was observed in experiments where Z2 was used. The overall biomass growth rate in suspension before the specimens were placed ranged from 3.18 to 3.5 mg DCW day(-1). After the bacterium was exposed to UC and ZC, growth continued with a corresponding value of 4 + or - 0.4 and 5.5 + or - 0.6 mg DCW day(-1), respectively. No biomass growth was observed upon exposure of the bacterium to Z2. Similarly, while biological sulphur oxidation rates in UC and ZC were 88 + or - 13 and 238 + or - 25 mg SO(4)(2-) day(-1), respectively, no sulphate production was observed in experiments where Z2 concrete specimens were used. Peak OURs for UC and ZC ranged from 2.6 to 5.2 mg l(-1) h(-1), and there was no oxygen uptake in those experiments where Z2 was used. The present study revealed that the antimicrobial zeolite inhibits the growth of both planktonic as well as biofilm populations of Acidithiobacillus thiooxidans.

Related Organizations
Keywords

Acidithiobacillus thiooxidans, Biofilms, Zeolites, Biomass, Anti-Bacterial Agents

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    28
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
28
Top 10%
Top 10%
Average