Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Biodegradationarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Biodegradation
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Biodegradation
Article . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
Biodegradation
Article . 2020
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Study and valorisation of wastewaters generated in the production of bacterial nanocellulose

Authors: Soares da Silva, F. A. G.; Oliveira, João Vítor; Felgueiras, Catarina; Dourado, Fernando; Gama, F. M.; Alves, M. M.;

Study and valorisation of wastewaters generated in the production of bacterial nanocellulose

Abstract

Two culture media were tested for the production of bacterial nanocellulose (BNC) under static culture fermentation, one containing molasses (Mol-HS), the other molasses and corn steep liquor (Mol-CSL), as a source of carbon and nitrogen, respectively. These are low-cost nutrients widely available, which provide very good BNC productivities. However, the use of these substrates generates wastewaters with high organic loads. Anaerobic digestion is one of the most promising treatments for industrial wastewaters with high organic loads since, beyond removal of the organic matter, it generates energy, in form of biogas. The wastewaters from BNC fermentation were thus evaluated for their biochemical methane potential through anaerobic digestion. For this, two wastewaters streams were collected: (i) the culture medium obtained after fermentation (WaF) and (ii) the WaF combined with BNC washing wastewaters (WaW). These two effluents-WaF and WaW-were characterized regarding their chemical oxygen demand, total nitrogen, total and volatile solids, to assess their suitability for anaerobic digestion. The biochemical methane potential of WaF and WaW from Mol-CSL wastewaters was (387 ± 14 L kg-1 VS) and (354 ± 4 L kg-1 VS), corresponding to a methanization percentage of (86.9 ± 3.1) % and (79.5 ± 0.9) %, respectively. After treatment, the chemical oxygen demand of WaF and WaW was reduced by (89.2 ± 0.4) and (88.7 ± 1.5), respectively. An exploratory test using an Upflow Anaerobic Sludge Blanket reactor for WaW treatment was also performed. The reactor was operated with a organic loading rate of [(6.5 ± 0.1) g L-1 d-1] and hydraulic retention time of 3.33 days, allowing a chemical oxygen demand removal of 58% of WaW. Results here obtained demonstrate, for the first time, the high potential of AD for the valorisation of the BNC fermentation wastewaters.

Country
Portugal
Related Organizations
Keywords

Biological Oxygen Demand Analysis, Science & Technology, Sewage, Biogas, Wastewater, Waste Disposal, Fluid, Bacterial cellulose, Biodegradation, Environmental, Bioreactors, Anaerobic digestion, Anaerobiosis, wastewater, Methane, Low cost substrate

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 9
    download downloads 6
  • 9
    views
    6
    downloads
    Data sourceViewsDownloads
    Universidade do Minho: RepositoriUM96
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
5
Top 10%
Average
Average
9
6
Green
bronze