Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Climatic Changearrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Climatic Change
Article . 2021 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Electricity end-use and construction activity are key leverage points for co-controlling greenhouse gases and local pollution in China

Authors: Li-Jing Liu; Qiao-Mei Liang; Felix Creutzig; Nan Cheng; Lan-Cui Liu;

Electricity end-use and construction activity are key leverage points for co-controlling greenhouse gases and local pollution in China

Abstract

Greenhouse gas (GHG) and pollutant emissions are closely related to the economic structure. Most of the existing studies focused on single type of emissions and cannot provide guidance for co-controlling multiple emissions. Here, we provide an improved elasticity method based on input-output model that relates both supply and demand side at high resolution, evaluated for GHG emissions, local air pollution, solid waste, health, water quality, and economy-wide welfare metrics. The method allows to identify high-resolution structural adjustment intervention points that combine reduction in GHG emission and local environmental damage with stable performance in economy-wide welfare. Investigating the Chinese economy, our results show that key leverage points for simultaneously reducing GHG and local pollutants include electricity inputs of various industries, building materials inputs of housing construction, and fertilizer inputs of agriculture. Therefore, emerging political interventions include reducing the fertilizer use in agriculture, improving the electricity efficiency in raw chemical materials manufacturing and in the metal products industry, and saving inputs of steel, cement, and other building materials in construction, e.g., by transition to prefabricated or 3D printing construction. Urban households can reshape final demand by moderating electricity consumption and adjusting investments in real estate. Reduced export of low-value added steel and metal products would further improve environment and contribute to global climate change mitigation.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Top 10%
Average
Average
bronze