Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Climatic Changearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Climatic Change
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
UCL Discovery
Article . 2023
Data sources: UCL Discovery
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aaltodoc Publication Archive
Article . 2023 . Peer-reviewed
Climatic Change
Article . 2023 . Peer-reviewed
versions View all 8 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Revealing effective regional decarbonisation measures to limit global temperature increase in uncertain transition scenarios with machine learning techniques

Authors: Pei-Hao Li; Steve Pye; Ilkka Keppo; Marc Jaxa-Rozen; Evelina Trutnevyte;

Revealing effective regional decarbonisation measures to limit global temperature increase in uncertain transition scenarios with machine learning techniques

Abstract

AbstractClimate change mitigation scenarios generated by integrated assessment models have been extensively used to support climate change negotiations on the global stage. To date, most studies exploring ensembles of these scenarios focus on the global picture, with more limited attention to regional metrics. A systematic approach is still lacking to improve the understanding of regional heterogeneity, highlighting key regional decarbonisation measures and their relative importance for meeting global climate goals under deep uncertainty. This study proposes a novel approach to gaining robust insights into regional decarbonisation strategies using machine learning techniques based on the IPCC SR1.5 scenario database. Random forest analysis first reveals crucial metrics to limit global temperature increases. Logistic regression modelling and the patient rule induction method are then used to identify which of these metrics and their combinations are most influential in meeting climate goals below 2 °C or below 1.5 °C. Solar power and sectoral electrification across all regions have been found to be the most effective measures to limit temperature increases. To further limit increase below 1.5 °C and not only 2 °C, decommissioning of unabated gas plants should be prioritised along with energy efficiency improvements. Bioenergy and wind power show higher regional heterogeneity in limiting temperature increases, with lower influences than aforementioned measures, and are especially relevant in Latin America (bioenergy) and countries of the Organisation for Economic Co-operation and Development and the Former Soviet Union (bioenergy and wind). In the future, a larger scenario ensemble can be applied to reveal more robust and comprehensive insights.

Countries
Switzerland, United Kingdom, Finland, Switzerland
Related Organizations
Keywords

info:eu-repo/classification/ddc/333.7-333.9, info:eu-repo/classification/ddc/550, Uncertainty, Machine learning Scenario ensemble, 910, Machine learning, Scenario ensembles, Energy transition, Regional analysis

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    2
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
2
Average
Average
Average
Green
hybrid