Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Environmental Monito...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Environmental Monitoring and Assessment
Article . 2023 . Peer-reviewed
License: Springer Nature TDM
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Quantifications and predictions of sectoral pollutants emissions in Nigeria from 1980 to 2050

Authors: Khadijat Abdulkareem Abdulraheem; Jamiu Adetayo Adeniran; Adeniyi Saheed Aremu; Muhammad-Najeeb O. Yusuf; Rafiu Olasunkanmi Yusuf; Emmanuel Toluwalope Odediran; Jacob Ademola Sonibare; +1 Authors

Quantifications and predictions of sectoral pollutants emissions in Nigeria from 1980 to 2050

Abstract

The fast-economic development and population growth in Nigeria have resulted in huge quantities of air pollutants emission which have implications on the environment. Detailed sectoral emission inventory to serve as the basis for policy formation to mitigate the condition is still lacking. This study builds detailed sectoral emission inventory using the emission factor approach to estimates various pollutant emissions from different sources. Five major sources of pollutant emissions were identified which include transportation, energy, municipal solid waste, wood fuel, and agricultural sectors. An increasing trend in emissions from 1980 to 2020 was observed for total emission of CO, NOx, PM2.5, PM10, SO2, NH3 and NMVOC in Nigeria that increased from 1 736-6 210; 143-338; 126-551; 171-717; 19-60; 4-28; and 471-1 587 Gg, respectively. Wood fuel, transportation, and municipal waste sectors are the major sources that contributed to 63%, 16%, and 15% of the total CO emission. Three mitigation scenarios for emission reduction for the future were analyzed. CO emission reductions of 38%, 24%, and 38% will be obtained from the liquefied petroleum gas (LPG) intervention, waste to energy (WTE) technology, and vehicle inspection and maintenance (VIM) policy scenarios, respectively, through to the year 2050.

Keywords

Air Pollutants, Nigeria, Air Pollution, Environmental Pollutants, Particulate Matter, Environmental Monitoring, Vehicle Emissions

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%