Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ INRIA a CCSD electro...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Materials Science
Article . 2010 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Investigation of reactive cerium-based oxides for H2 production by thermochemical two-step water-splitting

Authors: Abanades, Stéphane; Legal, Alex; Cordier, Anne; Peraudeau, Gilles; Flamant, Gilles; Julbe, Anne;

Investigation of reactive cerium-based oxides for H2 production by thermochemical two-step water-splitting

Abstract

This study focuses on the use of cerium-based mixed oxides for hydrogen production by solar-driven thermochemical two-step water-splitting. Mixed cerium oxides are proposed in order to decrease the reduction temperature of ceria and to avoid material sublimation occurring above 2,000 °C during the high-temperature solar step. Ceria-based nanopowders were synthesized by soft chemistry methods including the modified Pechini method. The influence of the synthesis method, the type of cationic element mixed with cerium, and the content of this added element was investigated by comparing the reduction temperatures of the derived materials. The synthesized powders were characterized by X-ray diffraction, thermogravimetric analysis, SEM, and Raman spectroscopy. Results showed that the synthesized pure cerium oxide is more reactive toward reduction than a commercial powder. Among the different elements added to ceria that were screened, the addition of zirconium significantly improved the reduction of ceria at temperatures below 1,500 °C. Increasing zirconium content further favored cerium reduction yield up to 70%. Water-splitting tests were performed to demonstrate the reactivity of the developed materials for H2 production. The amount of H2 evolved was enhanced with a temperature increase, the maximum H2 production from Ce0.75Zr0.25O2−δ was 0.24 mmol/g at 1,045 °C, and the powder reactivity upon cycling was demonstrated via thermogravimetry through two successive reduction–hydrolysis reactions.

Country
France
Keywords

[CHIM]Chemical Sciences, [ CHIM ] Chemical Sciences

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    212
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
212
Top 1%
Top 1%
Top 1%