Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Journal of Materials...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Materials Science
Article . 2019 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Supercooling characteristics of mannitol phase transition system under heterogeneous nucleation

Authors: Jun Ji; Yinghui Wang; Xuelai Zhang; Yue Chen; Jotham Muthoka Munyalo; Sheng Liu;

Supercooling characteristics of mannitol phase transition system under heterogeneous nucleation

Abstract

Supercooling of phase change materials (PCMs) during solidification is a major problem in cold thermal energy storage (CTES), which reduces energy efficiency and aggravates energy waste. This study focuses on the supercooling characteristics of PCMs under heterogeneous nucleation, which provides a new idea for researching the influence of different dispersants on the supercooling degree of aqueous solution. The optimal ratios of CNTs water dispersant (TNWDIS) and polymer polyacrylic acid sodium (PAAS) to multi-walled carbon nanotubes (MWCNTs) in mannitol aqueous solution are determined through microstructure and cooling characteristics. How these two surfactants and MWCNTs with different concentrations and particle sizes influence the supercooling degree of nanofluids are investigated. The results indicate that the effect of PAAS is greater than that of TNWDIS. Furthermore, under the action of two dispersants and particle sizes of MWCNTs, the fitting equations of supercooling changing with the concentration of MWCNTs are obtained. In the light of the heterogeneous nucleation theory, with the enlargement of the particle size and the diminution of the contact angle affected by the dispersants, the interfacial free energy of heterogeneous nucleation of PCMs on the surface of nanoparticles is reduced. The supercooling degree therefore decreases. Specifically, the nucleation mechanism is deduced and analyzed through the contact angle and nucleation free energy formula.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%