
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Lubricant properties of Moringa oil using thermal and tribological techniques

The increasing application of biobased lubricants could significantly reduce environmental pollution and contribute to the replacement of petroleum base oils. Vegetable oils are recognized as rapidly biodegradable and are thus promising candidates for use as base fluids in formulation of environment friendly lubricants. Although many vegetable oils have excellent lubricity, they often have poor oxidation and low temperature stability. Here in, we report the lubricant potential of Moringa oil, which has 74% oleic acid content and thus possess improved oxidation stability over many other natural oils. For comparison, Jatropha oil, cottonseed oil, canola oil and sunflower oil were also studied. Among these oils, Moringa oil exhibits the highest thermo-oxidative stability measured using PDSC and TG. Canola oil demonstrated superior low temperature stability as measured using cryogenic DSC, pour point and cloud point measurements. The friction and wear properties were measured using HFRR. Overall, it was concluded that Moringa oil has potential in formulation of industrial fluids for high temperature applications.
- University of Agriculture Pakistan
- Pennsylvania State University United States
- United States Department of the Interior United States
- University of Agriculture Faisalabad Pakistan
- Government College University, Faisalabad Pakistan
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).71 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
