Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Thermal A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Journal of Thermal Analysis and Calorimetry
Article . 2020 . Peer-reviewed
License: Springer TDM
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Entropy generation of turbulent Cu–water nanofluid flows inside thermal systems equipped with transverse-cut twisted turbulators

Authors: M. E. Nakhchi; M. T. Rahmati;

Entropy generation of turbulent Cu–water nanofluid flows inside thermal systems equipped with transverse-cut twisted turbulators

Abstract

In the present study, numerical simulations have been carried out on thermal characteristics and second-law analysis of turbulent Cu–H2O nanofluid flow with the nanoparticle volume fraction of 0<ϕ<1.5% inside heat exchangers fitted by transverse-cut twisted tapes (TCTTs) with alternate axis. The transverse-cut ratios are in the range of 0.7 < b/c < 0.9 and 2 < s/c < 2.5, and the Reynolds number is varied between 5000 and 15,000. The impacts of the design variables on the turbulent kinetic energy, temperature distribution, thermal and frictional entropy generations and Bejan number have been evaluated. The simulations show that the TCTTs with b/c = 0.7 generate higher turbulent kinetic energy compared to the b/c = 0.9 due to higher swirl generation and flow disturbance. The additional recirculating flow produced near the alternate edges is another main physical factor for heat transfer augmentation. It is found that raising the nanoparticles volume concentration reduces the thermal entropy generation which is attributed to the thermal conductivity enhancement of nanofluids. Besides, raising the nanoparticles volume concentration from 0 to 1.5% reduces the Ng,thermal by 23%.

Related Organizations
Keywords

F300, F200

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    33
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
33
Top 1%
Top 10%
Top 10%
Green
bronze