
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An experimental study on thermophysical properties of nano-$${\text{TiO}}_{2}$$-enhanced phase change materials for cold climate applications

AbstractIn high-energy-demand regions, such as the Arctic, the building sector is focused on reducing the carbon footprint and mitigating environmental impact. To achieve this, phase change materials (PCMs) are being investigated for thermal energy storage due to their high latent heat of fusion. However, their limited applications arise from poor thermal conductivity. In addressing this issue, the research delves into the preparation and characterization of nano-PCMs. These materials, synthesized in a laboratory setting, exhibit enhanced thermal performance compared to pure PCMs, attributed to the incorporation of nanoparticles in the material composition. Therefore, in the study, three paraffins with different melting temperatures (10, 15 and 18 °C) are modified by incorporating titanium oxide at various concentrations (0.05, 0.1, 0.2 and 0.5 mass%). Thermal conductivity and latent heat capacity measurements were undertaken using a thermal conductivity measuring apparatus and differential scanning calorimetry, respectively. The aim was to evaluate the enhanced performance of the modified PCMs in comparison with pure PCMs and to assess their suitability for cold climate regions. Results showed that nanoparticle incorporation increased thermal conductivity by up to 37%, albeit with a slight reduction in latent heat capacity of up to 12%. Among the samples, RT18 exhibited the most significant improvement in thermal conductivity, while RT10 experienced a minor decrease in enthalpy values. Ultimately, RT10 was identified as the optimal PCM option for cold climates, as its phase change temperature range aligns with the outdoor temperatures in the Arctic.
- The Arctic University of Norway Norway
- University of Hertfordshire United Kingdom
- University of Hertfordshire United Kingdom
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).0 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
